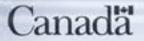


Communications Centre de recherches Research Centre sur les communications Canada

An Agency of Industry Canada

Canada

Un organisme d'Industrie Canada


CENTRE DE RECHERC

The SCA: Myths vs Reality Is the SCA what you think it is?

Steve Bernier Researcher, Project Leader Advanced Radio Systems

IUNICATIONS

RCH CENTRE

Outline

1. Overview of the Software Communications Architecture (SCA)

2

ARCH CENTRE

2. Is the SCA too slow?

3. Is the SCA too fat ?

4. Summary

CENTRE DE RECHERCHES SELE COMMUNICATIONS RESEA

- The SCA was developed to assist in the development of SDR for the Joint Tactical Radio System (JTRS). As such, the SCA has been structured to:
 - Provide for portability of applications between different SCA platforms
 - Leverage commercials standards to reduce development costs
 - Reduce software development time with the ability to reuse design modules
 - Build on evolving commercial frameworks and architectures
- The SCA is not a system specification but an implementation-independent set of rules that constrain the design of systems to achieve the above objectives

AUNICATIONS

CENTRE DE RECHER

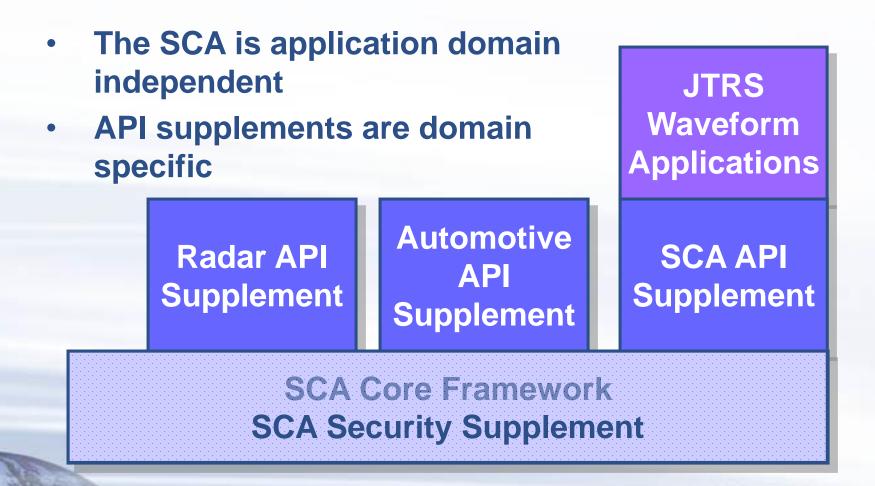
• Myth #1: The SCA is only for military Radios

 While its true the SCA specification was developed for the US DoD JTRS program, the <u>reality</u> is the core framework specification contains no military features at all !

 Myth #2: The SCA is for building Software Defined Radios

IUNICATION

- None of the core framework APIs are radio specific !
- An SCA platform can host any kind of application
 - radar, medical imagery, test equipment, etc.


CENTRE DE REC

- The SCA Core Framework specification (version 2.2.2) is made of five documents:
 - Main document (130 pages)
 - Appendix B Application Environment Profile (21 pages)
 - Appendix C IDL (41 pages)
 - Appendix D Domain Profile (64 pages)
 - Appendix D Attachment 2 Common Properties (4 pages)
- Previous releases of the SCA specification had two extra documents named <u>Security Supplement</u> and <u>API Supplement</u>
 - These documents were last published in 2001

CENTRE DE RECHER

- The security supplement adds RED/BLACK centric APIs
- The API supplement adds communications/radio centric APIs

MUNICATION

COMMUNICATIONS

- The SCA specification describes how to create a platform that can host SCA-compliant applications
 - It describes how a platform makes its devices and services available to applications
 - It also describes how applications are deployed
- The SCA describes an architecture capable of doing what every real-time operating systems does:

JNICATION

Load and execute applications

CENTRE DE REC

- Specify priorities and stack sizes for individual tasks

• So what is so unique about the SCA?

- It is platform independent
 - Supports any operating system*, processor, and file system
- It is a scalable distributed system

CENTRE D# RECHERO

- Supports single processor applications the same way it supports multi-processor applications
- An SCA platform can be made of several nodes with different processor architectures running different operating systems supporting different file systems

INICAL

• The most unique attribute of the SCA is that it's actually a Component Based Development architecture !

* OS must meet a subset of POSIX APIs

• What is Component Based Development (CBD) ?

- Definition: an architecture which allows the creation, integration, and re-use of components of program code
- CBD is a new development paradigm where the smallest unit of software is a component
- With CBD, an application is '<u>assembled</u>' using software components much like a PCB is populated with hardware components
- CBD is a very popular paradigm for application development
 - '.Net' (from Microsoft) and 'EJB' (from Sun Microsystems) are two very popular CBD architectures

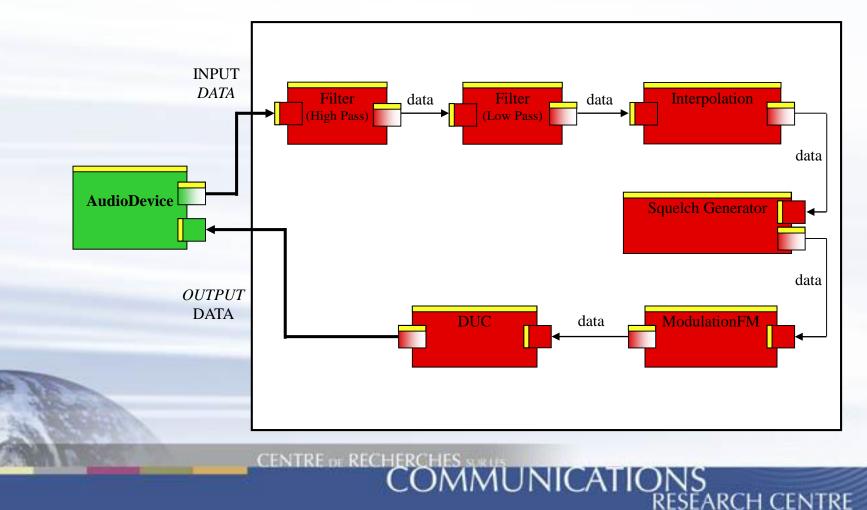
UNICATION

 The OMG CORBA Component Model (CCM) is another example of a CBD architecture

CENTRE DE RECHERC

Software Component

- Definition: is a small, reusable module of executable code that performs a well-defined function. It is designed, implemented, and tested as a unit prior to integration into an application
- It is not a function compiled and stored in a static library; it's executable code which provides a service
- A software component is a "black box"

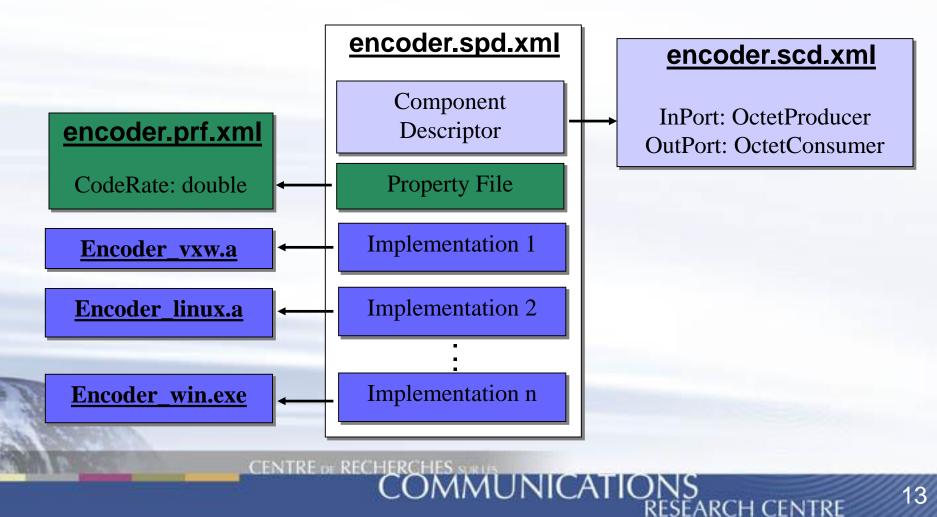

CENTRE D# RECHER

- Application designer is concerned with what a component does, not how it does it
- Creating an application requires component assembly-level information; the equivalent of a "spec sheet"
 - With the SCA, this information is located in a database called the "domain profile"

IUNICATION

Here's an example of a component assembly

FM modulation application


• How is the SCA different as a CBD ?

CENTRE DE RECI

- As opposed to **EJB**, the SCA supports native components
- As opposed to .Net, the SCA is platform-independent
- As opposed to **CCM**, the SCA is device-centric
 - Provides fine control over the deployment of components
- With the SCA, a software component can be packaged with several implementations
 - Each implementation is characterized by capacity requirements (run-time memory, mips, channels, etc.) and capability requirements (OS, processor, etc.)

JNICATIO

 Here's what the definition of an SCA software component (spec sheet) looks like:

- In summary, the SCA is a Component Based Development architecture which is platformindependent and device-centric
- The SCA is <u>not</u> specific to SDR or military applications

COMMUNICATIONS

RCH CENTRE

Outline

1. Overview of the Software Communications Architecture (SCA)

15

RCH CENTRE

2. Is the SCA too slow?

3. Is the SCA too fat ?

4. Summary

COMMUNICATIONS

- In order to measure the speed of the SCA, lets look at different common use cases for an SCA platform:
 - Use Case 1: Booting an SCA platform
 - Use Case 2: Installing an application
 - Use Case 3: Running an application

CENTRE DE RECHERC

- Use Case 1 involves starting a number of SCA components
 - Starting software components means creating a number of process/tasks
 - This is not unique to the SCA, it's required for any SDR platform

NUNICATION

- How fast can your RTOS create/spawn a process/task ?
- How fast can application artifacts be copied from storage memory to run-time memory ?

- Use Case 2 involves loading all the artifacts associated with an application into storage memory of an SCA platform
 - Again, this is not unique to the SCA
 - Depends on the speed of the bus/memory and the size of the artifacts

1UNICATIONS

 Installation of an application is typically done at the factory when time is not very critical

CENTRE DE RECHERCHES

- Use Case 3 involves starting application software components
 - A target device must be chosen for each component
 - This may take some time, but the SCA offers a way of avoiding run-time decisions

JNICATION

18

- The chosen implementation for each component must be loaded into the runtime memory of the target device
 - Depends on the speed of the bus/memory

CENTRE DE REC

- This can be an issue; not unique to the SCA
- Better SCA implementations can alleviate this problem

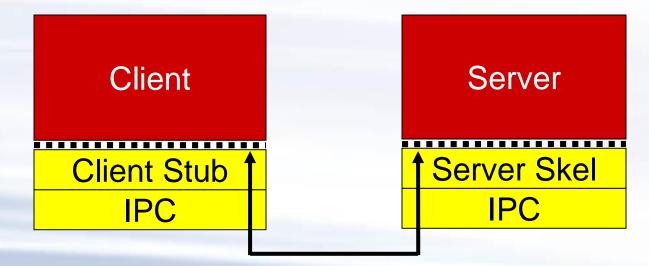
Use Case 3 also involves data processing

- SCA application components must communicate with each other to perform signal processing
- With the SCA, communications are normally implemented using CORBA

AUNICATIONS

- Application throughput is therefore limited by CORBA
- How fast is CORBA?

CENTRE DE RECHERCHES


- CBD requires inter-process communications (IPC) to allow components to interact
 - A software component can run as a process or task
 - Cannot assume components always run in a process
- The SCA mandates the use of CORBA as the primary form of communications between software components
 - CORBA is very scalable and provides a single model for component communications
 - Communications APIs are the same whether components are across the network, on the same board, or in the same process

1UNICATIONS

CORBA is COTS

CENTRE DE RECH

- CORBA supports several IPC mechanisms
- However, most commercial CORBA products are implemented using the Socket IPC mechanism for TCP/IP

CENTRE DE RECHERCHES SERVICE COMMUNICATIONS

RCH CENTRE

Myth #3: CORBA is slow!

- The speed of communications between components is directly related to the IPC mechanism being used
- Using TCP/IP can be slow and it's often a bad choice for embedded systems
- In reality: CORBA is NOT slow but TCP/IP can be.
- Real-time CORBA products typically support several IPC mechanisms
 - UDP, Multicast, Shared Memory, etc.

CENTRE DE REC

Developers can add support for other IPC mechanisms

IUNICATIONS

• Using a Real-time ORB makes a great difference!

- For instance, ISR Technologies manufactures an SCA radio which comes with two applications: Voice over IP and Video
- Using the ORBexpress (i.e. CORBA) and the INTCONN IPC, they were able to lower the ping delay between two radios to ~10µsec vs ~300 µsec for TCP/IP

CENTRE DE RECHERCHES SELEU COMMUNICATIONS

- Is CORBA slow?
 - The real question is: <u>How fast is your IPC mechanism?</u>
- If there's an IPC mechanism that's fast enough for your application, then you should use CORBA!
 - no learning curve for the IPC
 - Provides IPC independence

CENTRE DE RECHE

- if a new and faster IPC becomes available, you can use it without changing any source code
- <u>Conclusion</u>: The SCA is as fast as the CORBA product being used
 - The SCA does not get involved in the communications between application components; only CORBA does!

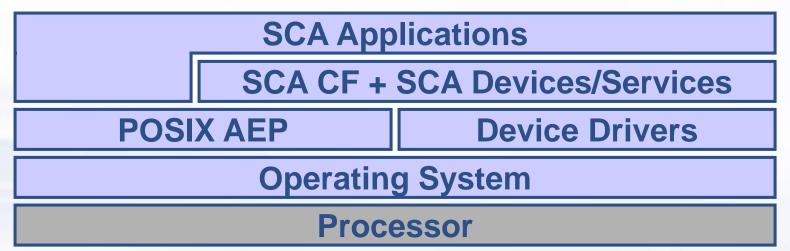
AUNICATIONS

Outline

1. Overview of the Software Communications Architecture (SCA)

25

RCH CENTRE


2. Is the SCA too slow?

3. Is the SCA too fat ?

4. Summary

COMMUNICATIONS

Here's a block diagram of an SCA platform

- The SCA requires an operating system capable of loading new code dynamically
 - Many SDRs only use a simple scheduler/kernel which only supports static images

*i*unicatio

Essential to support new applications without rebooting

CENTRE DE RECHERCHES

• The SCA does not require just any OS

- OS must provide a subset of the POSIX APIs
- Essential to enhance application portability

The SCA Core Framework

- Provides platform control
 - Install/launch applications
 - Start node components to gain access to devices
- Requires an XML parser
 - Xerces-C++ requires 2.6 MB of static footprint and typically around 4 MB of dynamic footprint

JNICATIO

Requires CORBA generated code

CENTRE DE RECHER

Static footprint: 750K (ORBexpress) or 3.3 MB (TAO)

SCA Application

- Is an assembly of several software components
- Each component requires CORBA generated code
 - Static footprint: 730K for ORBexpress or 3.3M for TAO
- Quantifying the footprint requirement for an SCA radio is difficult
 - Is directly related to the number of software components required by the platform and the applications
 - Currently, a full featured SCA CF and a node with a couple devices and services will require around 25 MB of footprint

JNICATION

- The Xerces-C++ XML parser will use ~40%
- CORBA generated code ~30%

CENTRE DE RECHER

- The CRC AudioEffect demonstrator runs in ~50 MB of total footprint
 - Embedded Planet PPC405 board (EP405), 128MB RAM
 - CRC' SCARI++ CF for INTEGRITY/ORBexpress
 - Node description:
 - Full featured *DeviceManager*
 - ExecutableDevice
 - *Log* service
 - Application with 3 components which perform Echo and Chorus effect on an input voice signal

AUNICATIONS

- Xerces-C++ XML parser
- INTEGRITY Kernel with POSIX and VFS/NFS support
 - ORBexpress Name Service

CENTRE D# RECHER

CH CENTRE

- The ISR JTRS Demo Set requires ~51 MB of total footprint
 - VoIP 256 Kbits/s BFSK, Video Waveform1024 Kbits/s BFSK
 - Xilinx Virtex-4 FPGA, 128MB RAM
 - CRC' SCARI++ CF for INTEGRITY/ORBexpress
 - Node description:
 - DeviceManager, DDCDevice, DUCDevice, EthernetDevice, FGPAExecutableDevice

aunications

- 2 SCA applications of 2 components each
- Xerces-C++ XML parser
- INTEGRITY Kernel with POSIX and VFS/FFS support
- ORBexpress INTCONN support

CENTRE DE RECHER

ORBexpress Name Service

• Is the SCA is too fat?

 Reality: the SCA can be large for a small form factor SDR which will never be upgraded post-manufacturing

1UNICATIONS

31

- Won't fit on a cell phone...yet!
- SCA CF Implementations can be made "lighter" while maintaining compliance with the SCA

- Its just a question of time...

CENTRE DE REC

Outline

1. Overview of the Software Communications Architecture (SCA)

32

RCH CENTRE

2. Is the SCA too slow?

3. Is the SCA too fat ?

4. Summary

COMMUNICATIONS

4. Summary

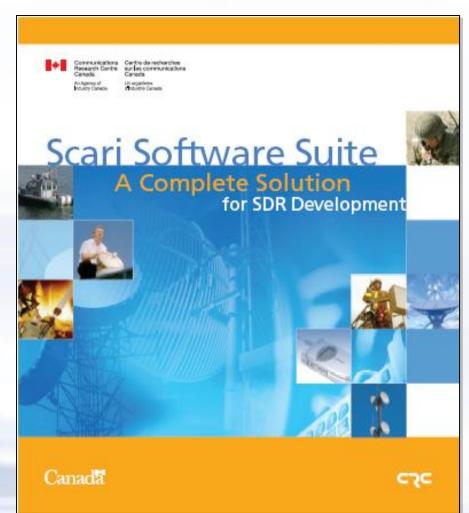
- The SCA is a Component Based Development architecture
 - Not specific to military SDR
 - Can be used for any embedded application

The SCA can be slow

- Using a Real-Time CORBA product is essential
- The SCA footprint is reasonable and will improve with time
 - 64 MB is enough for many platforms

CENTRE DE RECHER

The SCA can be made smaller without having to change the specification


aunications

Questions?

CENTRE DE RECHERCHES SIEUE COMMUNICATIONS RESEARCH CENTRE

SCARI++ Software Suite

- CRC offers the most complete solution for SCA development
 - Development tools
 - Monitoring tools
 - Core Framework
 - Training
 - Consulting
 - Certification expertise

COMMUNICATIONS

SCARI++ Software Suite

• Team has over 6 years of SCA experience

- CRC trained companies from around the world
- CRC helps companies to gear-up for the SCA market
- CRC's SCARI++ Core Framework is available for the most popular operating system and processors
- CRC will soon offer a completely new Eclipse-based Integrated Development Environment (IDE)

UNICATIONS

CENTRE DE RECHERCHES

IDE Highlights

- CRC offers an complete Integrated Development Environment (IDE) for the SCA
 - Core Framework Independent
- Implements real-time model validation; prevents you from creating invalid XML descriptors
 - Validation messages are hyperlinked to models
- Provides model re-factoring capabilities
 - Common model validation errors can be fixed through suggested re-factoring
- Can reverse-engineer models for existing components

CENTRE DE RECHERCH

CRC's development tools have been designed with an intimate knowledge of the SCA specification

aunications

IDE Highlights

Based on the widely adopted Eclipse framework

- Provides platform independence (Windows, MAC, Linux, etc)
- Every major vendor of the embedded domain support Eclipse
- There is a enormous number of plug-ins to choose from to help with every aspect of software development (code authoring, documentation, unit test, configuration management, UML, etc.)

Simplifies Configuration Management

CENTRE DE RECH

Perform CM tasks at the model level instead of at the artifacts level

JNICATION

CRC also provides a Core Framework: SCARI++

- Built from the ground-up for embedded platforms
- Implementation of the SCA version 2.2
- Very portable POSIX implementation

CENTRE DE REC

- Implemented with lessons learned from the JTRS Certified SCARI Core Framework
- Comes with a POSIX Executable Device, an AudioDevice and demo applications

aunications

Provides extra APIs for introspection

CENTRE DE REC

- Optimized way of obtaining deployment information
- Can show established connections during run time
- Supports the deployment of components on standalone remote *Devices*
 - Devices can be started manually and report to a remote DeviceManager
- Allows Devices to be collocated in a same address space
 - Dramatically increase rate of communications between Devices

NUNICATION

- Transparently optimizes connections so they can be performed as fast as possible
 - Indirect connections are transformed into direct connections which requires much less CORBA interactions
- Supports orderly shutdown of devices even when running applications
 - A Device can be released or killed while it is running an application

aunications

CENTRE DE RECI

Available for different operating systems:

- INTEGRITY
- VxWorks
- Linux
- Yellow Dog
- and soon for LynxOS

• Available for different ORBs:

CENTRE DE RECHERC

- ORBexpress
- TAO

AMUNICATIONS

rch centre