

Communications Research Centre Canada

An Agency of Industry Canada Centre de recherches sur les communications Canada

Un organisme d'Industrie Canada

The Software Communications Architecture

Claude Bélisle
Research Manager
Military Satellite Communications
Communication Research Centre
claude.belisle@crc.ca

Canadä

SCA - A Paradigm shift

- Decouples hardware, software and system integration functions
 - Facilitates acquisition process by eliminating stovepipe systems
- Promotes re-use of signal processing software modules
 - Modulator, demodulator, encoder, interleaver, FFT...
 - Reduces application development cost
- Open framework architecture
 - "Glues" the software and hardware
 - Facilitates application and module portability

SCA Core Framework

- Central radio software piece, the "operating system"
- Provides an abstraction between software and hardware
 - Defines interfaces, behavioural specifications and general rules to support devices and application portability
- Based on commercial standards
 - X.731 ITU/CCITT OSI System State Management
 - CORBA
 - Posix (Portable Operating System Interfaces)
 - CCM (Corba Component Model)
- Designed to meet commercial as well as military application requirements

SCA Design Concept

SCA Core Framework

- The Core Framework consists of:
 - Base Application Interfaces
 - Framework Control Interfaces
 - Framework Service Interfaces
 - Domain Profile
- It specifies a life cycle for the signal processing modules to be downloaded on the hardware:
 - Load
 - Initialize
 - Connect
 - Configure

- Execute
- Terminate
- Unload
- Release

Building a Reference Implementation

What is a Reference Implementation ?

- Open-source software
- Defines the behavior of the specifications
- Codifies all of its relevant technical aspects

Benefits of RI

- Reduces the level of ambiguity of the SCA specifications
- Increases the potential for interoperability
- Increases understanding of the architecture through an example
- Reduces the cost and time-to-market of SDRs

CRC and SCA-RI

- Active member of SDR Forum
 - Participated in the development of the SRA
 - Involved in SCA technical discussions
 - Introduced the concept of Ports to enable true modularity of software components
- Developed a PoC Software Defined Radio
 - FM Line-of-Sight
 - SCAv0.3
 - In C++ on Digital Signal Processors (DSP)
- Realized the need for an Open Source Reference Implementation
 - Proposal to SDR Forum to promote commercial adoption
 - October 2001

SCARI (1)

Implementation

- SCA version 2.1
- Mandatory features
- Written in Java for portability and ease of comprehension
- Includes a simple waveform example

Partners

- Implemented in collaboration with DRDC Ottawa
- Sponsored by the SDR Forum

SCARI (2)

Product

- 60,000 lines of code, 300 pages of documentation
- Peer reviewed
- Available at www.crc.ca/rmsc or www.crc.ca/scari
- More than 7000 downloads from worldwide organizations
- 37 000 hits since June 2002

By-product

 CRC submitted 21 technical change proposals to JTRS / JPO in reference to SCA version 2.2

Impact of SCARI

- Opened the door to new players
 - No longer limited to the majors
 - Decoupled Hardware / Software / Waveform development
- Facilitated the emergence of new markets for SDR concepts
 - Radar processing
 - Medical imagery
 - Other signal processing intensive applications
- Transformed the waveform development approach
 - Modularity at component level rather than applications

Waveform Development Vision

Current Approach

- Extension of conventional techniques
- Single monolithic block defining the application
- In this case, the waveform is the application

Taken from JTRS API Supplement

Waveform Development Vision

- Considering that software cost is:
 - 20% development
 - 80% maintenance
- Development approach strongly promoted by CRC
 - Reduce the granularity of the software components
 - Similar to specialized chip sets in board design
 - Simplifies debug and maintainability
 - Facilitates reuse of components between applications

Waveform Development Vision

- A waveform is composed of many applications
- Each application is composed of many signal processing modules (resources)

Application Example Digital Audio Broadcast

Physical Layer of the DAB receiver application containing 12 resources

CRC Waveform Application Builder

DAB Example

Connecting Applications

- Connections between applications is however required
 - This is supported by the SCA but mechanism not flexible enough, requires hardcoding
- There is a need to transpose the resource connection mechanism to the application level
 - CRC will submit a change proposal to JTRS/JPO
 - Paper to SDRF conference to be published

Following the RI

- CRC continues to develop software to promote the expansion of the Software Define Radio
 - SDR Development Tools
 - Waveform Application Builder (WAB)
 - Radio Manager
 - Node Boot Builder
 - SCA Core Framework v2.2
 - Java
 - Hybrid
 - C++

CRC SCA Core Framework v2.2

Java

- Extension of SCARI
- Low cost
- Most valuable for training
- JTEL certification would be important for public release

Hybrid

- Java for management functions, C++ for signal processing
- Easy to maintain Domain Manager
- Allows development of devices and resources in C++
- Mid-range cost
- Applicable to embedded platforms with single board computer running Java virtual machine

CRC SCA Core Framework v2.2

• C++

- Full feature implementation of SCA CF v2.2
- All C++ implementation
- Applicable to embedded platforms
- High cost

Communications Research Centre Canada

An Agency of Industry Canada Centre de recherches sur les communications Canada

Un organisme d'Industrie Canada

Thank You

claude.belisle@crc.ca

