Software Communications Architecture (SCA)

and
Rapid Application Development

Presented by:
Steve Bernier and Hugues Latour

Communications Research Centre Canada
November 5, 2007

« SCA Overview

« SCA and Component-Based Design (CBD)
» Rapid Application Development (RAD)

« SCA Architect ™ RAD Features

e Summary

« SCA Overview

« SCA and Component-Based Design (CBD)
» Rapid Application Development (RAD)
« SCA Architect ™ RAD Features

e Summary

SCA OVerRVIeWw:

The SCA was created for the US DoD Joint Tactical Radio
System (JTRS) program

— Created by the Modular Software—programmable Radio Consortium
(MSRC): Raytheon, BAE Systems, Rockwell Collins, and ITT

— Assisted by the Communications Research Centre of Canada

The goal of the SCA is to facilitate the reuse of waveform
applications across different radio sets

— Technology insertion and capability upgrades

The SCA defines a central piece of software that acts as the
“SDR operating system”

" — SCA Core Framework

: - #
\" : -

ﬁ R CENTRE 6t RECHERCHES <t
\A \/

SCA OVerRVIeWw:

The SCA is independent of the application
domain

Different applications are supported by
domain-specific APIs

JTRS
Waveform
Applications

Base Station
APIs

Automotive
APIs

JTRS APIs

SCA Core Framework

« SCA Overview

« SCA and Component-Based Design (CBD)

» Rapid Application Development (RAD)
« SCA Architect ™ RAD Features

e Summary

SCA — Component-Based Design — A Different Perspective

The SCA i1s a Component-Based Design (CBD) architecture

What is Component-Based Development ?
— Definition: an architecture which allows the creation, integration, and re—
use of software components
— CBD is a development paradigm where the smallest unit of software is a
component

— Using CBD, an application is ‘assembled’ using software components
much like a board is populated with hardware components

Characteristics of a Software Component:

— A small, reusable module of binary code that performs a well-defined
function (i.e. a black—box)

— Designed, implemented, and tested as a unit before it is used in an
application

SCA — Component-Based [Design

CBD promotes the COTS culture and is enabling the
Industrialization of software

The goal is to use the hardware development paradigm for
software:

— Purchase software components from a catalog
 Describe how to influence behavior (config properties)
» Describe how to interface (ports)
 Describe resource consumption (capacity properties)
» Describe resource requirements (capability properties)

CBD is currently the most popular programming paradigm:
— Microsoft’s CBD is the “.NET” framework
— Sun Microsystem’s CBD is the “EJB” framework
%= OMG’s CBD is the “CCM” framework

SCA — Component-Based [Design

Q-

Ild hardware

How do we bu

(N

RESFARCH CENTRE

SCA — Component-Based [Design

To connect hardware components, appropriate connectors
must be used:

SCA — Component-Based [Design

Definitions; Back to the small board...

Components Assembly

SCA — Component-Based [Design

Software equivalent of the small board:

I'tsS
SCA Architect ™
A S T E— pse SD =121 x]

File Edit Refactor Mavigate Search Project Run VYiew Window Help

T~ & Q-5 = - |[1o0% =] =1 CA Architect 857 Java

E Project Exp... 52 P) ffectapplicationd X = E}
I=1-1=% DemonstrationProject 4 ——Palette ——
@ Properties [} Select
@ Ports 7, Marguee = <<Vfirt\ Ml Device=>
AudioDevice
[@ Component Types S e
[Components -
#-[7) Uses Devices Standard AudioinConty
=@ Applications 280 Gt
B FM_Radio_Crosgisnd log ucioOutCont
LogProducerap tion eventchannel A choCi 7 toollort
i AudicEffectAp] ion0 || namingservice
=@ Nodes — User Defined Compo...
i K -nodelDeviceMa -
[Domain Manager Col r - . . R
Cm oL DigitalDownconverter_ <<Domain Finder Log>>
1= scariOpen %_| DigitalUpconverterRes.

l $:] DigitalUpconverter_svc| log
% _| FMDemodulatorResour //'

£ | FMModulator_svc i
£ | FMRadioAssemblyCont. L ot '
hudigkchoResoring Audioin Audio
Filter_svc Out AudioOut
& | GainResource o)
K| | 21|l €] cain_sve

{] SignalDetectorResourc
% | SignalDetector_svc

£ | SineWaveGeneratorCo Audi
% | sineWaveGeneratorCo

£ | SineWaveGeneratorRe

€] SineWaveGenerator_s

% | SquelchDetectorResou

%_| SquelchDetector_svc
| smislchin®rrarRecairce
Canvas] Information Form | Properties Form |

(['_ Problems 23 Console| R o= E)

5% outline 52 i

SCA — Component-Based [Design

With the SCA, there are two types of constructs:

1. Components:

— Some SCA components are provided with SCA Core Framework
product

« Ex: DomainManager, DeviceManager, Log service, File, FileSystem,
FileManager, Event channels, etc.

— Other components are created by platform providers and application
developers

« Ex: Resource, ResourceFactory, Device, LoadableDevice,
ExecutableDevice, etc.

2. Assemblies:
— Defined as a collection of application or node components

SCA — Component-Based [Design

SCA components are described by 3 kinds of modeling elements:
1. Ports: used to get data to/from a component
2. Properties: used to alter the behaviour of a component

3. Implementations: used to describe which operating environments a
component supports

FM3TREncoder

LEC G inpat
LEG Cortrol Disabdle boofear . lrue

Operational NMode string : voice
FIMITR [aveformiPacketizerin

FIUITR A aveformPacketizerOut

SCA — Component-Based [Design

SCA applications are described by 2 kinds of modeling elements:
1. Component Instantiations: which components are part of the application

2. Connections: how instantiations are interconnected

GElETE AudioinleftDouble
et

<<Domain Finder Log>>
log 1 RFDevice g

DoublelataOut

used only for
frequency
tunning

NowbieData Out DigitalupconverterResource = |

DaowirieDataim

FiltterWoiceTxResource TN fiTIA LogPort
Data Ot

[] ' r
Oouflelatain Double FMModulatorResource 3 DoubleDataOut
Datain

Suelc hinjector FMModuator DigitailpconverterResource Control

Resowrce Contral ResowrceControl

Fliterliaice Tx

Atdio Ol eRDoubie
ResourceCantrol

- RFDevice Controf
=)

<<AssemblyController>>
FM_App_SingleBandAssembhController

FilterSgueichRxResolrce Contral

LogPort

FMDemodwiator | FilterlioiceRx

ResomceContral | ResourceCantrol etz hDetectorResolrce Contral

Audiio et
: DigitalDownconveter
DeviceCantral Resowrce Contral

Dawbielatain Daubie
Datain gotubcile ;
M FilterVoiceRxResource i i

DigitalDownconverterResource E] FilterSquelchRxResource |

L]
DownbieDataln Dauble

Logrart
DowbieDatain DataOut

DoubeData Out

DouirieDatain
[]

FMDemodulatorResource 3d SquelchDetectorResource Gl [5IE Alal

{1]
saiginRightoonble fandQ0ataln

<<fDomain Finder Logr»> |
r log

« SCA Overview
« SCA and Component-Based Design (CBD)

Rapid Application Development (RAD)
« SCA Architect ™ RAD Features

e Summary

Rapid Application Development

What is Rapid Application Development (RAD) ?
— Development process invented by James Martin in the 1980s
— Involves iterative development and use some form of Model Driven

Development (MDD) tool

Rapid means Fast!

The RAD process is optimized for speed and relies on two key
concepts: Prototyping and Iteration

Prototyping: creating a demonstrable result as early as possible

Iteration: commitment to incremental development based on refinement
Prototyping and Iteration go hand—in—hand

Rapid Application Development

Advantages of Rapid Application Development:
— Clarity/precision: Development starts at a higher level of abstraction

— Portability: High—level abstractions are translated into platform
specific artifacts

— Early visibility: Can quickly create prototypes
— Greater flexibility: Developers can redesign almost at will

— Fewer defects: Because of modeling wizards and model translation
which greatly reduce manual coding

— Reduced cost: Shorter development cycles, time is money!

T s CENTR ?'i.ce"ﬁ'a'fsqﬁ(i

Rapid Application Development

RAD requires specialized tools that provide:

. .

Graphical development/modeling: to support a high level of abstraction

Creation of working prototypes: for early visibility and greater
flexibility

Multiple operating environments: to support portability and greater
flexibility

Teamwork/collaboration and version control : because of early
visibility and greater flexibility

Reusable artifacts: to support shorter development cycles and reduced
cost

CENTRE o uﬁz; S

Rapid Application Development

Concept of graphical development also known as Model-
Driven Development (MDD):

Filter\aice Tx. Saqueichimectr
W iwsiaCutLefDoutle Re50urce Comro! Aesource Contral

iblyControllers»
leBandAssembhyController

DgaiDowrcomerter
ResauresConiton

¥DoutieDatain
.

L
FMDemodulstorResource 3
»,

FaudangightDautie

<<Domsiu Finder Log»>
log

Rapid Application Development

The development of a SCA assemblies is achieved by
assembling a number of components together:

AudioDevice ©] L_mmumum
T

=<flomain Finder Logs>
log

PFDavice |

Squelehinectorfesource 3

« < AgaemblyContr oller >
FM_App SingleBandAssemblyController

RagourceContror

FlioubveDataln

iy
L

Bl ittoable

Rapid Application Development

Development of a SCA applications can be performed using an
Iterative process

Iterative refinement happens at two levels :

1. Component level example:
— Create a component with two ports and a couple of properties
— Successively refine by adding business logic, ports and/or properties

2. Assembly level example:
— Create an application made of a few components
— Successively refine by adding more components, connections

— Can also refine by requesting that some components be collocated or by
overriding default values for component properties

Rapid Application Development

Typical iterations for development of a component :

L~
Test and ~|_, Final Product Understand
Evaluate Release Requirements

Start| here
Test Componentl

[/ S

Generate and Build Componentl —\/ Model Componentl
/
\ /’//-Add Input port to Componentl
/

Generate , Specialize, Build Componentl — — Add property to Componentl

Build \/ Design the

Iteratively System

Rapid Application Development

Graphical view of the refinement process for a component:

HclosWaveformAssembhiyController
atmfOut

vilin ENABLE TRACE Jottg : D HifC
TRACE FHFE string . HclosWaveformResource.irace.log
R LRI MANE RINDING string : HolosWaveformAssemblyController [Eiigbba-iciobi
WAVEFORM AMODE string @ HCLOS
execlevice LOG ST ENARLE Jong @ 1
LOG SCA_ENARBLFE Jong : 1
brafFic 0 Device LOG _LFVEF ENARLFD Jong : OxOFF

InterUinitDevice

guciio Gt

traffic O Ctr
INTEGRITY Irterlinit Gt

e s Cirf ppc mochem Chef

guelioDegice modemleyvice

auciioEvent

holosChel foooer

Rapid Application Development

Typical iterations for development of an assembly:

Test and
Evaluate

/’

— Start
Deploy and Run Applicationl —_

[/

Final Product Understand
Release Requirements
here

| \
Generate and Package Applicationl —

~

Generate and Package Applicationl ——

\

Build

/ — Model Applicationl
/

— Add Component4, connections
/

— Change default value for a
property of Component2

Design the

System

Iteratively

Rapid Application Development

Graphical view of the refinement process for an assembly:

AudioDevice g

C _,Iﬂud.l'o.fn.f_er?ﬂoubre
o

<<Domain Finder Log>>
log RFDevice g

DigitalupcenverterResource 38

used only for
frequency
tunning

DaubieData Qut
DaonblelDataln

FitterVoice TxResource 38 Doubie LogPo

Data Qut] _ £~
DoubleDatain Daubie FMModulatorResource 3 DaoubieData Out

Datain

Fitterlioice T Sopnelchingectar FMModatator

Adctio DatlefDoub
et anle Resawrce Contral Resaurce Cantral Resource Control

DigitaiUpcomverterfesanrce Contral

<<AssemblyController>> = | RFDeviceCanirol

FM_App_SingleBandAs=semblyController

hadel
Auetia
Device Cantrof

DigitaiDowncanverder FMDemodaigtor FilterlloiceRx

Resource Contral ResaurceConbral | ResaurceContral SquelchDetectorResource Controf

NaubieDatal) Doubie
[] aubiebaatn Data O Do fe
Data Out

Digital[]nwncomerterllesnurce:Fi

LagFort
Doubielatain

Doybelatain

1

ueliolnRightDoukie

Rapid Application Development

The refinement process actually happens at both the component
and assembly level simultaneously:

Create Componentl with two ports and a couple of properties
Create Applicationl which includes Componentl

Deploy and run Applicationl

Refine Componentl by adding business logic, ports, properties
Refine the Applicationl by adding more components, connections
Deploy and run new revision of Applicationl

Refine Applicationla by collocating some components

Refine Applicationla by overriding default values for component
properties

Deploy and run Applicationlb

Etc.

Rapid Application Development

RAD tools must support short cycles to promote refinement:
— Must be very simple to successively refine a model
— Must be easy to translate models into source code
— Translation must be flexible and generate as much functionality as possible

Model I\/IOdIerd
; SOl el Source Code
o 4 hh
co Dy | hh Add Business
Generate e Logic
|) |)

fawilcd
file

Deploy and

Integra&

Feedback

« SCA Overview
« SCA and Component-Based Design (CBD)

» Rapid Application Development (RAD)

« SCA Architect ™ RAD Features

e Summary

SCA Architect™ Overview

CRC’s SCA modeling tool: SCA Architect™

& SCA Architect - FEM3TR_Audio - Eclipse SDK
File Edit Mavigate Search Project Run Wiew Window Help

ci- AU A S R A SR A B |37 sca architect | B cicr+ & 1ava
E' Project Exp.., &2 Mavigator | =0 Ez AudicEFfectassemblyController ﬁz FM3TR_pAudio &2 =0
[=-§3 MyTestProject ~ 14— Palette —— 2
#-[@ Properties [y Select
[-[F Ports I:I+ Marguee
#¢F Component Types —+ Cannections
[#-[[y Components
E]---g Uses Devices hietondrd *
[_]g applications filemanager
AudicEffectapplicationd log
Bl Fratr_suwdio e"entc:a””e: .
eventchannel pushconsumer
FM3TR Data o namingservicep
. LogProducerApplication
[Nodes == User Defined Compa... #
#-[[Domain Manager Configuratic & | AssemblyContraller
..... ® oL £ | AudioCapture
[=-1=F Scenariol a AudioChorusResource
-0y Properties % | AudioDevice
E-[Ports # | AudicEchoResource
ga Eomponen: Tvpes & | AudioEFfectassemblyC,. . o
_____ g Uz::;:z:l:s # | AudioPlayback .
- Applications L & | BitPacketizerSto?
- Modes £ | BitPacketizer7taS
[#-[F) Damain Manager Configuratic & | DeviceManager_ExecP...
$:| DeviceManager _SetEny
$:| DormainManager_Exec... :
£]0 ¥l Li £ =N
CanvasJ Infarmation Farm | Properties Farm |
E_\ Problems &2 Compaosition | Console | :=:€> = =0
127 errors, 423 warnings, 0 infos
Description ~
= - Warnings {100 of 423 items) n
& & log producer component type must have a configure property of type sequence of long with an ID of 'PRODUCER_LOG_LEVEL',
& A log producer component bype must have a configure property of bype sequence of long with an ID of 'PRODUCER_LOG_LEVEL',
& & log producer component type must have a configure property of type sequence of long with an ID of 'PRODUCER_LOG_LEVEL',
L, e, A imme e F i mns ek ks s meFion e me ek mf ke mmimme s oF bnme ik e TR A IAOAR R e L CUCT ! !

|~
|

= O LDINIIANLD T INEOLTT
I ———— N—

SCA Architect™ Overview

SCA Architect™ main characteristics:

— Eclipse—based:

 Platform independence, easy integration with third party tools, wealth of free
plug—ins, etc.

— Supports modeling of every SCA concept graphically

« Application assemblies: Resource instantiations , ResourceFactory, all types of
connections, host—collocation, etc.

» Node assemblies: Device instantiations, Device aggregations, use device
relationships, all types of connections, etc.

— Translates models into source code, build files, documentation, etc.
— Supports multiple target Operating Environments (OESs)

— Provides real-time validation of models

— Provides reverse—engineering of SCA domain profile files

'¥> Enables configuration management
N

SCA Architect™ RAD Eeatures

Most importantly, SCA Architect™ |s a RAD tool:

— Already supports several RAD features both at the component and at the
assembly level

Component—level RAD features:
1. Flexible and Comprehensive Code Generation
2. Zero—Merge Code Generation
3. Model Refactoring
4. Quick—fixes

Assembly—level RAD features:
1. AssemblyController Modeling and Code Generation
2. ResourceFactory Modeling and Code Generation

Pk

SCA Architect™ — Component-1Level' RAD; Features

1. Flexible and Comprehensive Code Generation:
a. Generates a fully functional component out of the box

b. Provides a Framework to handle component properties:
« Type, Range and Enumeration validations are taken care of automatically
« Transparently handles SCA requirements:
— Raises proper exceptions when validation problems occur
— Supports empty queries
« Abstract CORBA intricacies
— Querying a property is mapped to a C++ getter
— Changing a property is mapped to a C++ setter
— ‘struct’ type of property is mapped to a C++ structure

— ‘structsequence’ type of property is mapped to a C++ array of structures

SCA Architect™ — Component-1Level' RAD; Features

1. Flexible and Comprehensive Code Generation (cont):

c. Provides a framework to handle capacity properties:
« Allocation and deallocation of capacity is automatically handled

« Required Device state management is also automatically handled
— 21 states and close to 70 transitions

SCA Architect™ — Component-1Level' RAD; Features

1. Flexible and Comprehensive Code Generation (cont):

d. Provides a Framework to route packets from input ports to output ports:
« Connection handling is done automatically
« Data processing is controlled via the component start/stop

« Data processing simply requires the implementation of one method
— Default behavior is “pass through”

noint to multi—

Resource Resource

SCA Architect™ — Component-1Level' RAD; Features

1. Flexible and Comprehensive Code Generation (cont):

e. Provides the option of generating a thread to pump data out:
« Thread processing is controlled via the component start/stop
« Data acquisition simply requires the implementation of one method

AudioDevice

SCA Architect™ — Component-1Level' RAD; Features

2. Zero—Merge Code Generation:

a. Supports iterative refinement without any merge tool
b. Merging source code is very error prone and cumbersome perged

4 hh

bawiiled
file

Generated

Previously Modified
__Source Code

ot &e oo Hh
Ge‘i\e{a GG

Merge
Source Code

Source Code
|_ L

Source Code

Add Business
Logic

SCA Architect™ — Component-1Level' RAD; Features

2. Zero—Merge Code Generation (cont):

c. Isachieved by keeping the business logic separate from the model
generated code

d. Base Code: Generated from the model
e. Business Logic: Specializes the base code

Model

Base Code Generated Code

Specialized Code [RELELRISERRVs][¢

SCA Architect™ — Component-1Level' RAD; Features

2. Zero—Merge Code Generation (cont):

f.

Model can be refined several ways without requiring a merge:
Can add/remove a property
Can edit a property to add/remove/change range or enumeration validations
Can add/remove a port
Can add/remove fields to a property of type structure
Generated code can always be specialized

SCA Architect™ — Component-1Level' RAD; Features

3. Model Refactoring:

a. Model can be refactored comprehensively:

« The model of a Property being used by several components can be changed
across a whole project

The same is true for Ports and Components

4. Quick Fixes:

a. After reverse—engineering SCA domain profile files, validation may
produce several errors and warnings

b. Fixing errors/warning manually can be very tedious
c. SCA Architect offers an automated way of fixing problems:

« Don’t have to edit a form to repair the problem; choose from alternatives fixes

SCA Architect™ — Assembly-1-evel' RAD Features

1. AssemblyController (AC) Modeling and Code Generation

d.

Using a wizard, SCA Architect™ can generate an AC model from an
application assembly model:

« Specify which component needs to be controlled

« Specify which port / property needs to be exported

Code generation of an AC creates proxy ports and proxy properties
The AC is the main component of an application assembly

The AC is generally connected to every component of an application
assembly in order to control them

Every time a new component is added in the application assembly, the AC
must be changed. The same is true when a new property/port needs to be
made external

Maintaining an AC can quickly become a nightmare

SCA Architect™ — Assembly-1-evel' RAD Features

2. ResourceFactory Modeling and Code Generation
a. Using a wizard, SCA Architect™ can generate a ResourceFactory model
from a list of application components:
« Specify which component needs to be deployed by the ResourceFactory
Doesn’t require a single line code to be changed in the Resources

b. Can be used to optimize footprint and performance of several application
components

Resource Resource

Resource Implementation Implementation

Implementation

Resource Factory Implementation

Resource Server
Standalone Resource
%‘ ResFact Server

N,
A ¢

\ N et Several Resources Combined

m . & - CENTR - of RECHERCHES o

« SCA Overview
« SCA and Component-Based Design (CBD)

» Rapid Application Development (RAD)
« SCA Architect ™ RAD Features

summary/

The SCA is a Component-Based Design architecture

SCA Architect ™

File Edit Refactor Mavigate Search Project Run VYiew Window Help

Ci-Ela Q- |5 [t
E Project Exp... £2 i =l

I=1-1=% DemonstrationProject

[Properties

[Ports

‘[@ Component Types

[Components

‘@) Uses Devices

=@ Applications

i FM_Radio_Crossisnd
LogProducerap tion

H AudioEffectap, ion0

£ Modes

H .nodelDeviceMa

‘[@ Domain Manager Col

@ oL

[+]-{=* scariOpen

omponen

5] —

< v J| 100% v|

Ports

=18l x|

By CA Architect &85 Java

dioEffectapplicationd X

='E}

—— Palette —
[} Select

7, Marquee

—* Connections
— Standard

og
eventchannel
namingservice

— User Defined Compo. ..

5F outline 52 =i

DigitalDownconverter _.
a DigitalUpconverterRes,
% | DigitalUpconverter_svc}
£ _| FMDemodulatorResour

£ | FMModulator_svc
£ | FMRadiofssemblyCont

Filter_swve
Q GainResource
£ | Gain_svc
{] SignalDetectorResource
$:| SignalDetector_svc
£ | SineWaveGeneratorCo
% | sineWaveGeneratorCol
% | SinetaveGeneratorRe
£ | SineWaveGenerator_s:
% | SquelchDetectorResou
$:I SquelchDetector_svc

| smislchind:

<<Wirt, Device>>

AudioinContrfe

wchioOutCont
Au

YoOut

choC 3 Lo

<<Domain Finder Log>>

log

el

7

Audioin Audio
AngioOut

scolce -
Canvas] Information Form | Properties Form

(E'_ Problems 2

Console |

)

Without any API supplement, the SCA is not radio nor military
specific

JTRS
Waveform
Applications

Base Station Automotive

APIs APls JTRS APIs

SCA Core Framework

summary/

Using a RAD tool can definitely

-
Test and -1
Evaluate

Start
Test Componentl

[

make It easier to use the SCA

Understand
Requirements

Final Product
Release

here

Generate and Build Componentl —

~~

Generate , Specialize, Build Componentl —

\

Build

— Model Componentl

/ /
—Add Input port to Componentl
/
— Add CodeRate property to Componentl

—

Design the
System

Iteratively

Questions ?

Business: jeet.hothi@crc.ca
Technical: steve.bernier@crc.ca
Web Sites: http://www.crc.ca/rars

http://www.crc.ca/scari

