
1

Evolution of the SCA
Past, Present, and Future

Presented by: Steve Bernier, M.Sc.

Research Scientist

Advanced Radio Systems

Communications Research Centre (CRC)

Government of Canada

2

1. SCA Overview

2. Evolution of the SCA Specification

3. Evolution of SCA Tools

4. Evolution of SCA Core Framework

5. Future Core Frameworks

6. Summary

Outline

3

• The SCA was created for the US DoD Joint Tactical
Radio System (JTRS) program
– Created by the Modular Software-programmable Radio Consortium

(MSRC): Raytheon, BAE Systems, Rockwell Collins, and ITT

• The goal of the SCA is to facilitate the reuse of
waveform applications across different radio sets

• The SCA is not a system specification!
– Provides an implementation-independent set of rules that constrain the

design of systems to achieve the above objectives

SCA Overview - JTRS

4

Base Station

APIs
Automotive

APIs

JTRS

Waveform

Applications

JTRS APIs

SCA Core Framework

SCA Overview – Block Diagram

• The SCA is independent of the application domain

• Different applications are supported by domain-
specific APIs

5

SCA Overview - CBD

• From a software development perspective, the SCA is
a Component-Based Development (CBD) architecture

• What is Component-Based Development ?

– Definition: an architecture which allows the creation, integration, and
re-use of software components

– CBD is a new development paradigm where the smallest unit of software
is a component

– With CBD, an application is ‘assembled’ using software components
much like a board is populated with hardware components

• Characteristics of a Software Component
– A small, reusable module of binary code that performs a well-defined

function (i.e. a black-box)
– Designed, implemented, and tested as a unit before it is used in an

application

6

Outline
• CBD promotes the COTS culture and is enabling the

industrialization of software

• The goal is to apply the hardware development
paradigm to software
– Purchase software components from a ‘spec-sheet’ catalog

o Describe how to influence behavior (config properties)
o Describe how to interface (ports)
o Describe resource consumption (capacity properties)
o Describe resource requirements (capability properties)

• CBD is currently the most popular programming
paradigm
– Microsoft’s CBD is the “.NET” framework
– Sun Microsystem’s CBD is the “EJB” framework
– OMG’s CBD is the “CCM” framework

SCA Overview - CBD

7

SCA Overview - CBD

• How do we build hardware?

8

Components Assembly

Port

SCA Overview - CBD

• Definitions; Back to the small board…

9

• Modeling tool for software components (CRC’s SCA Architect™):

SCA Overview - CBD

Components

Assembly

Ports

10

1. SCA Overview

2. Evolution of the SCA Specification

3. Evolution of SCA Tools

4. Evolution of SCA Core Framework

5. Future Core Frameworks

6. Summary

Outline

11

Step 3-Clusters

Step 2C

Step 2B

Step 2A

Evolution of the SCA Specification

2000 2001 2002 2003 2004 2005 2006 2007

JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND

SCAv0.3 Core Framework

SCAv0.4 Core Framework

SCAv1.0 Core Framework

SCAv1.1 Core Framework

SCA Security Supplement v1.0
SCAv2.0 Core Framework

SCA API Supplement v1.1

SCA Security Supplement v1.1

SCAv2.1 Core Framework

SCAv2.2 Core Framework

SCAv2.2.1 Core Framework

SCAv3.0 Core Framework

SCAv2.2.2 Core Framework

JTRS Standard APIs v1.0

SCAv3.1 Core Framework work paused

SCA API Supplement v1.0

12

Evolution of SCA Products

Magnitude of changes for the SCA Specification

2000 2001 2002 2003 2004 2005 2006 2007

Harris – DMTK Core Framework and Tools
CRC – SCARI Open Core Framework and Tools

CRC – SCARI++ Core Framework and Tools
CRC – Runtime Monitoring Tool

Zeligsoft – Component Enabler Tool
CRC – SCARI2 Open Core Framework and Tools
Virginia Tech – OSSIE Open Source Core Framework

Zeligsoft – Code Generation
PrismTech – Spectra Tool with Code Generation
Zeligsoft – Runtime Monitoring Tool

PrismTech – Spectra Core Framework

CRC – Code Generation

13

1. SCA Overview

2. Evolution of the SCA Specification

3. Evolution of SCA Tools

4. Evolution of SCA Core Framework

5. Future Core Frameworks

6. Summary

Outline

14

Evolution of SCA Tools
Before 2002

• The most popular SCA tool was a text editor!
• XML files were developed manually
• Synchronization between source code and XML was done manually
• SCA compliance validation was also manual
• No formal way of representing an SCA model

XML

SynchronizationSource

Code

SCA

Model

SCA

Model

15

Evolution of SCA Tools
Since 2002

• There are two kinds of tools: Development and Runtime

• Development tools evolved from glamorized XML editors to graphical
modeling tools

• Development tools now provide:

– Graphical modeling environment

– Model validation

– Reverse-engineering

– Automatic generation for source code, documentation, domain profile

– Configuration Management

– And more…

• Runtime tools provide:

– Application installation, launching, and control

– Platform monitoring and control

16

Evolution of SCA Tools
Today

• XML files are generated from a model; not manually created
• The same is true for Source Code, Documentation, etc.
• Synchronization between artifacts is handled by modeling tools
• Tools provide “validators” for SCA-compliance
• Tools can be used to import manually created XML
• Tools also provide a modeling environment which guides developers

to avoid non-compliance issues
• SCA models can be represented graphically

17

Evolution of SCA Tools
Today

Synchronization XML

Source

Code

Doc

Tests

Reverse engineering

Runtime tool

SCA Application

Modeling tool

SCA

Model

SCA

Model

18

1. SCA Overview

2. Evolution of the SCA Specification

3. Evolution of SCA Tools

4. Evolution of SCA Core Framework

5. Future Core Frameworks

6. Summary

Outline

19

Evolution of SCA Core Frameworks
• First generation Core Frameworks were implemented

in the early days of the JTRS Program
– Many US DoD contractors implemented portions of the full SCA Core

Framework between 2000 and 2002 (Steps 2A, 2B, and 2C)

– Harris DMTK Core Framework was made available for licensing in 2002

– CRC released the SCARI-Open publicly for free in 2002

• First generation Core Frameworks were rather large
and slow
– Mainly due to the use of XML parsers designed for desktop applications

– Developers concentrated on understanding (and fixing) the SCA
specification and making their Core Framework work

– Used CORBA with TCP/IP transport which is slow for real-time systems

20

Evolution of SCA Core Frameworks
• Second generation Core Frameworks are smaller and

faster (2003 - 2004)
– Small Form Factors required for the JTRS program led US DoD

contractors to take different implementation decisions

– XML parsing is achieved with smaller/faster XML parsers

– Some basic optimizations have been implemented

– Use different transports for CORBA (no TCP/IP for local comms)

• Since then, R&D from several sources has led to the
identification of several optimization techniques with
great potential
1. DESIGNING JTRS CORE FRAMEWORKS FOR BATTERY-POWERED PLATFORMS: 10 TECHNIQUES

FOR SUCCESS, C. A. Linn, Harris Corporation, SDRF’02 Conference

2. JTRS SCA:CONNECTING SOFTWARE COMPONENTS, S.Bernier and al., SDRF’03 Conference

3. PUTTING IT ALL TOGETHER – OBJECTIVES AND CHALLENGES, J. Belzile, SDRF’05 Conference

4. TAKING THE SCA TO NEW FRONTIERS, S. Bernier and C. Belisle, Communications Research Centre

Canada, SDRF’06 Conference

5. COMMENTS ON SOFTWARE COMMUNICATIONS ARCHITECTURE SPECIFICATION VERSION 2.2.2,

SCA Working Group, SDR Forum, SDRF-06-W-0012-V0.01, October 2006

21

Evolution of SCA Core Frameworks
• Core Framework optimizations fall into two

categories:
– Task Optimizations

– Static Deployment Optimizations

• The main service provided by a Core Framework is
the deployment and configuration of applications
– To do so, a Core Frameworks performs a number of tasks:

1. Load Application XML files
2. Read Application assembly files
3. For each component of the application:

a. Choose an implementation
b. Deploy the implementation
c. Configure the component

4. Establish Component Inter-connections
5. Etc.

22

Evolution of SCA Core Frameworks
• Task Optimizations consists in making each task

faster and/or use less memory

• Papers published regarding Core Framework
optimizations concentrate on Task Optimizations:
1. Accelerate local file access
2. Use a caching systems for connections
3. Get all ports at once
4. Perform all connections at once
5. Allow full node registration in one call
6. Provide support for remote Devices
7. Provide a parser-free DeviceManager
8. Allow co-location of Core Framework components
9. Use a specialized XML parser
10. Use digested profiles

23

Evolution of SCA Core Frameworks
1. Accelerate local file access

– Avoid copying a file through SCA FileSystems when they are running
on the same native file system. Perform a native file copy instead.

o Can be significant for large files

2. Use a caching system for connections
– Cache the components and ports involved in connections to avoid

redundant lookups

o Provides speed improvement when several connections involve
the same port of a same component like in fan-in/fan-out
scenarios

Test Scenario File Size Time without

acceleration

Time with

acceleration

Improvement

Linux Desktop 3Ghz

Pentium without NFS

4 MB 355 ms 20 ms ~94%

INTEGRITY PPC405

SBC using NFS

1.5 MB 2.5 sec 1.5 sec ~40%

24

Evolution of SCA Core Frameworks
3. Get all ports at once

– Support a new way of obtaining all the ports of a single component in
one call

o Can be combined with the caching system for connections

o Provides speed improvement for applications with several
connections

4. Connect all ports at once
– Support a new way of connecting all the ports of a single component in

one call

o Can be combined with the caching system for connections

o Can be combined with getting all ports at once

o Provides speed improvement for applications with several
connections

25

Evolution of SCA Core Frameworks
5. Allow full node registration in one call

– Allow a DeviceManager to register with DomainManager using
digested information

o Can be very significant for platform with slow file systems (avoids
reading and interpreting XML files)

o Can also be very significant for slower processors (saves 19
CORBA calls per registering Device)

Test Scenario Standard

Registration

One call

Registration

Improvement

Linux Desktop, 1 Device 0.56 sec 0.19 sec ~ 66%

Linux Desktop, 4 Devices 1.53 sec 0.24 sec ~ 84%

LynxOS PPC405, 1 Device 0.86 sec 0.13 sec ~ 85%

LynxOS PPC405, 4 Devices 2.33 sec 0.22 sec ~ 91%

Note: Tests conducted in scenarios where DomainManager and DeviceManager run on same processor

26

Evolution of SCA Core Frameworks
6. Provide support for remote Devices

– Allow Devices started manually to register to a DeviceManager

o Minimize number of DeviceManagers required

o Allows Devices to be collocated in a single address space which
provides significant middleware speed improvements and
footprint savings

o By using this optimization, ISR Technologies was able to lower
transport latencies from 300 usec to 10 usec by co-locating
remote devices and using the INTCONN ORBexpress pluggable
transport available for INTEGRITY [reference paper #3]

7. Provide a parser-free DeviceManager
– Provide a DeviceManager with no deployment engine

o Can be combined with the remote Device support

o Allows Devices to be co-located in the address space of the
DeviceManager

o Provides both speed and footprint improvement

27

Evolution of SCA Core Frameworks
8. Allow colocation of Core Framework components

– Enable the DomainManager, DeviceManager, Services and Devices to
be colocated in a single address space

o Provides footprint savings

o Combining the DomainManager and DeviceManager can save up
to 50% of the total footprint

9. Use a specialized XML parser
– Use a hand-crafted XML parser. Avoid using DOM parsers

o Performs in 13 to 21% of the memory* required for DOM parsing

o Performs in 8 to 20% of the time required for DOM parsing

10. Use digested profiles
– Use XML files formatted as binary files and containing only the meta-

data required for deployment and configuration

o Performs in 7 to 13% of the memory* required for DOM parsing

o Performs in 5 to 15% of the time required for DOM parsing

* Dynamic memory (e.g. heap)

28

1. SCA Overview

2. Evolution of the SCA Specification

3. Evolution of SCA Tools

4. Evolution of SCA Core Framework

5. Future Core Frameworks

6. Summary

Outline

29

Future Core Frameworks
• Future Core Frameworks will need to be able to run

on very Small Form Factors
– Small both in terms of memory available and speed of processors

• To achieve this, Static Deployment Optimizations
will have to be used

• This kind of optimization consists in skipping tasks
a Core Framework normally performs for the
deployment of components

– Avoid performing the same task twice for the deployment of the
same application on the same platform

o Remember where components have previously been deployed

o Use a caching file system to avoid copying files previously loaded

30

• Use a caching FileSystem
– Avoid copying a file (whether remote or local) when most recent

version is already present in cache

o Requires persistent storage

o Can be very significant for large files or if an SCA FileSystem uses
small buffers to copy

Future Core Frameworks

Test Scenario File

Size

Cache miss

W/O local file

acceleration

Cache miss

with local file

acceleration

Cache hit Improvement

Linux Desktop 3Ghz

Pentium without NFS

4 MB 355 ms 20 ms 9 ms ~ 98%

INTEGRITY PPC405

SBC using NFS

1.5 MB 2.5 sec 1.5 sec 35 ms ~ 99%

31

CRC’s Core Frameworks
• CRC’s current SCARI++ Core Framework already

implements some of the task optimizations
described in this presentation

• The upcoming SCARI-GT Core Framework will
provide the optimizations introduced in this
presentation

– Provides all of the many task optimization described in this
presentation

– Also implements the caching file system optimization

– Will be available in Q4 2007

• The SCARI-RT Core Framework will enable full static
deployment of standard SCA applications

– Release in 2008

32

CRC’s Core Frameworks

Performance

S
i
z
e

SCARI Open

SCARI++

SCARI GT – Q4 2007

SCARI RT- 2008

33

1. SCA Overview

2. Evolution of the SCA Specification

3. Evolution of SCA Tools

4. Evolution of SCA Core Framework

5. Future Core Frameworks

6. Summary

Outline

34

• The SCA is a Component Based Development
architecture
– Not specific to military SDR; Can be used for any embedded

application

• The SCA specification has reached an acceptable
level of maturity
– There is an eco-system of COTS SCA products

• SCA Core Frameworks are becoming smaller,
faster, more deterministic and can still deploy
standard SCA applications unchanged

Summary

35

Questions?

Summary

steve.bernier@crc.ca

www.crc.ca/scari

